HARDWARE

Bewertung: 
0
Bisher keine Bewertung

Das Densitometer

Ein Densitometer ist ein Messgerät für Dichten von Tonwerten, so dass die Tonwertwiedergabe auf dem Film exakt beurteilt werden kann. Densitometer zeigen den gemessenen Tonwert als logarithmische Zahl an. Diese Zahl gibt den Grad der Dichte an. Dichte wird auch Schwärzung genannt. (Da sie von geschwärzten Silberteilchen kommt). Außer der Schwärzemessung gibt es noch die Farbdichtemessung.

Dichtemessung (Densitometrie):
Dichtemessung ermöglicht die objektive Beurteilung von Halbton- und Rastertonwerten. Also die Berechenbarkeit, Steuerung und damit die Standardisierung der Bildbearbeitung. Dichtemessung nimmt in dem ausgewählten Messbereichen von Bildern die Abdunklung in Bezug auf Weiß und ermittelt so die Tonwertstufe einer Farbe.


Es gibt 3 Arten von densitometrischer Messung:

  • Durchsichtsmessung (von Negativen und Diapositiven)
  • Aufsichtsmessung (von Fotoabzügen und grafischen Vorlagen)
  • Rastermessung (von gerasterten Filmen und Rasterdrucken)



Grundregeln für die Messung mit einem Densitometer

  • Das Densitometer muss kalibriert sein.
  • Densitometer muss vor der Messung auf das jeweilige Papierweiß des Auflagenpapiers genullt sein. (Damit die Papierfarbe keinen Einfluss auf die Messung hat).
  • Nur lasierende Farben messen, da nur sie mit zunehmend dickerer Farbschicht weniger Licht absorbieren.
  • Einseitig bedruckte Bogen auf weißer Unterlage messen. Doppelseitig bedruckte Bogen auf schwarzer Unterlage messen, da so der durchscheinende Druck neutralisiert wird.



Anwendungsgebiete:

  • Reproduktion
  • Desktop Publishing
  • Fotosatz
  • Technik
  • Medizien

Messprinzip

  • Licht wird durch Optik gebündelt auf bedruckte Fläche geworfen
  • Teil des Lichts wird absorbiert
  • Teil des Lichts durchdringt die durchscheinende Farbschicht (& wird abgeschwächt)
  • Restlicht wird von Bedruckstoff remittiert
  • davon läuft es wiederum zurück durch Farbschicht (weitere Abschwächung)
  • Linsensystem fängt Restlicht, welches aus der Farbschicht austritt
  • leitet es an Fotodiode
  • empfangene Lichtmenge wird in elektrische Energie umgewandelt
  • Elektronik vergleicht Messstrom mit einem Referenzwert
  • Differenz davon ist Grundlage zur Errechnung des Absorptionsverhaltens der gemessenen Farbschicht
  • Farbdichte wird angezeigt

 

Kurz

Hin: Lichtquelle -> Linsensystem -> Polarisationsfilter -> Farbfilter -> Messgut

Zurück: Linsensystem -> Polarisationsfilter -> Empfänger (Diode) -> Elektronik -> Anzeige

 

Filter

Farbfilter begrenzen Licht auf die für die jew. Druckfarbe relevante Wellenlänge

Farbfilter für:  Cyan -> Rot

                       Magenta -> Grün

                       Yellow -> Blau

                       Schwarz -> Breitband oder spez. Grünfilter

 

Polarisationsfilter verhindert größere Messwertdifferenzen zw. trockener & nasser Druckfarbe

 

 

 

Bewertung: 
0
Bisher keine Bewertung

Plotter

Plotter sind Computer gesteuerte elektronische Ausgabegeräte

  • Sie sind besonders für die Ausgabe von Zeichnungen aus CAD-Programmen (Computer unterstütztes Konstruieren) geeignet.
  • Man unterscheidet Flachbettplotter (kleine Formate) und Trommelplotter (große Formate)
  • Bei den Flachbettplottern liegt das Papier flach und fest auf dem Zeichentisch. Ein Stift wird mit einem horizontal und vertikal steuerbaren Schlitten über das Papier geführt.
  • Beim Trommelplotter bewegt sich der Zeichenstift nur in einer Richtung während die Bewegung in die 2. Richtung durch das Hin- und Herfahren des Papiert mittels einer Trommel durchgeführt wird. Das Papier wird dabei durch ein Vakuum in Kontakt mit der Trommel gehalten (durch automatisches Wechseln sind auch mehrfarbige Zeichungen möglich).
  • Eine Sonderform der Plotter sind schneid Plotter die Schablonen z.B. für den Siebdruck schneiden

Im Unterschied zu Drucker „setzen“ Plotter nicht einzelne Punkte, sondern zeichen oder schneiden „echte“ Linien. Vergleichbar mit: Messwertschreibern (EKG) die mit analog bewegten Tintenstiften Linien auf kontinuierlich vorgeschobenes Papier schreiben.

Generell sind 2 Verfahren zu unterscheiden:

  • Entweder wird das Plottmedium (Papier/Folie) unter dem Schreib- oder Schneidekopf von und zurück bewegt während dieser quer zur Papierrichtung läuft.
  • oder der Kopf wird auf x- und y-Schiene über das unbewegte Medium geführt.
  • Eine Kombination der Verfahren ist möglich.

 

  • Der Schreibkopf kann programmgesteuert mit verschiedenen Stiften für Strichstärken und Farben bestückt werden, bei schneide Plottern mit Messern (dem entsprechenden Material angepasst).
  • Ausgabegerät für Strichzeichnungen z.B. Bau- und Konstruktionszeichnungen.
  • Für Bilder und Verläufe sind sie nicht geeignet da sie keine Halbstöne darstellen können.
  • Bei Vektrografiken ist höchste Präzision erreichbar.
Tags: 
Bewertung: 
0
Bisher keine Bewertung

Beamereinsatz und -technologie

 Hier könnt ihr eure Zusammenfassung veröffentlichen.

Stichwort: ANSI Lumen

Bewertung: 
0
Bisher keine Bewertung

Computer-Peripherie

Zur Peripherie gehören alle Geräte, die den eigentlichen Computer ergänzen. Man unterscheidet zwischen Ein- und Ausgabegeräten.

Eingabegeräte: Tastatur, Maus, Scanner, Kamera, Grafiktablett, Mikrophon

Ausgabegeräte: Drucker, Plotter, Monitor, externe Lautsprecher

Verschiedene Peripheriegeräte sind zugleich Ausgabe- und Eingabegeräte: USB-Stick, Externe Festplatten, externe Laufwerke für CD/DVD, Headset

Um die externen Geräte zu nutzen, benötigt man entweder die passenden Anschlüsse USB, Firewire etc. oder kabellose Verbindungen wie Bluetooth.

AnhangGröße
PDF icon Peripheriegeräte.pdf121.31 KB
Bewertung: 
3
Durchschnitt: 3 (2 Stimmen)

Hardwarekomponenten

EVA-Funktionsprinzip: Eingabe - Verarbeitung - Ausgabe

Mikrocomputer

  • für Verarbeitung der Daten zuständig
  • zentrales Bauelement Mikroprozessor (CPU) dient zur Steuerung des Computers sowie zur Berechnung von Daten
  • über Systembus (Verbindungsleitungen) mit dem Arbeitsspeicher (RAM) verbunden
  • CPU befindet sich auf einem Sockel auf dem Mainboard
  • Mainboard enthält Arbeitsspeicher sowie weitere Schnittstellen und Controller, für den Anschluss
  • weiterer Peripheriegeräte
     

Peripheriegeräte

  • alle Geräte, die nach dem EVA-Prinzip genutzt werden
  • Anschluss durch verschiedene Schnittstellen, z.B. USB, FireWire
  • Unterteilung in drei Gruppen: Eingabegeräte (Tastatur, Maus, Scanner, Digitalkamera), Externe Speicher (Festplatte, USB-Stick, DVD-Laufwerk), Ausgabegeräte (Monitor, Drucker, Plotter, Belichter)

Hardware

  • ist der Oberbegriff für die maschinentechnische Ausrüstung eines Computers. Dazu gehören alle Komponenten (Prozessor, Arbeitsspeicher usw.) und Peripheriegeräte. Vereinfacht, alles was man anfassen kann. Computer-Hardware ist ausschließlich mit entsprechender Software benutzbar.
  • Hardware ist der Überbegriff für alle Eingabe-, Verarbeitungs- und Ausgabegeräte eines Computers.


Eingabegeräte

  • sind z.B. Maus, Tastatur, Grafiktablett, Scanner und Digitalkamera.


Zur Verarbeitungshardware

  • gehören Festplatte, verschiedene Laufwerke, Grafik- und Soundkarte, Arbeitsspeicher und die Hauptplatine mit CPU.


Ausgabegeräte

  • sind z.B. Drucker, Belichter, Monitor oder Lautsprecher.


Gesteuert wird die Computer(verarbeitungs)hardware vom BIOS, dem Betriebssystem und verschiedenen Treibern.

ROM

  • (Read only Memory) ROM ist ein Datenspeicher, der nur lesbar ist, er hält seine Daten auch im stromlosen Zustand. ROM ist verantwortlich für den Selbst-Test und das der Rechner hocgefahren wird, er startet das BIOS und führt Setups durch.

RAM

  • (Random Access Memory) Speicher mit wahlfreiem Zugriff, findet besonders als Arbeitsspeicher Verwendung. "Wahlfrei" bedeutet in diesem Zusammenhang, dass jede Speicherzelle über ihre direkte Speicheradresse direkt angesprochen werden kann.

Schnittstellen

  • USB (Universal Series Bus), Verwendung: Drucker, Maus und Speichersticks
  • RJ-45 Schnittstelle (Registerd Jack), Verwendung: Netzwerkverbindungen, Internetanschluss
  • Firewire: Verwendung: Externe Schnittstellen, DVD Brenner, Digitalvideokamera
  • VGA-Anschluss (analoger Bildübertragungsstandard) Verwendung für Bildschirm
  • DVI-, HDMI-, Displayport-Anschluss (digitaler Bildübertragungsstandard) Verwendung für Bildschirm
  • Parallele Schnittstelle (25-polig), Verwendung: ganz ersten Scanner und Modems, Druckerport
  • COM 1 Schnittstelle, ursprünglich Maus und externes Modem, (9-poli) durch USB abgelöst
  • Klinkenbuchsen für In/Output, Kopfhörer, Mikrofon, Lautsprecher
  • S/PDIF optische Übertragung digitaler Audiosignale

 

Bewertung: 
2.5
Durchschnitt: 2.5 (2 Stimmen)

Monitortechnologie

Bewertung: 
0
Bisher keine Bewertung

Monitor-Mathe

Errechnen der Diagonale 

Ein Display hat das Seitenverhältnis 16:10 und ist 80 cm breit. Wie lang ist die Diagonale in inch?

Matheaufgabe

Erläuterung der Schritte: Erster Schritt ist die Berechung der Monitorhöhe (Ergebnis: 50 cm)

Im zweiten Schritt wird im Zähler die Diagonale in cm berechnet (nach Pythagoras c2 = a2 + b2

Dieses Ergebnis muss noch durch 2,54 geteilt werden, um nach inches umzurechnen.

Anderes Beispiel: Ein Display hat das Seitenverhältnis 4:3. Der Monitor ist 12 inch breit:

 

 

 Läuft alles über Verhältnisgleichung ab:

Bewertung: 
0
Bisher keine Bewertung

Monitortechnologien

 

TFT = Thin Film Transistor
Funktionsprinzip TFT (LCD = Liquid Crystal Displays):
Organische Materialien (Flüssigkristalle) verändern ihre Lage durch Anlegen eines elektrischen Feldes und werden lichtdurchlässig. Das elektrische Feld ist durch elektronische Schalter ein- und ausschaltbar. Für jeden Bildpunkt werden 3 Transistoren benötigt (R, G, B). Die Farben werden mit Hilfe von Farbfiltern aus weißem Licht gewonnen.
Bsp.: Display mit 1.920 x 1.080 Bildpunkten ergibt: 1.920 x 1.080 x 3 = 6.220.800 Transistoren

Erfolgsgründe:
- Geringer Platzbedarf
- Geringer Strombedarf
- Geringe Wärmeentwicklung
- Flimmerfreies Bild
- Sehr Scharfes Bild
- In allen Größen herstellbar
- Sehr kontrastreiches Bild
- Fast keine Strahlung

TFT – Monitore sind Kalibrierbar.
Die Monitorgröße wird in Zoll angegeben (1 Zoll = 2,54cm)
Bsp.: Bilddiagonale 20“ ergibt: 20 x 2,54 = 51cm Bildiagonale

Logische Auflösung des Bildschirms: Anzahl an Bildpunkten in horizontaler und vertikaler Richtung.
Physikalische Auflösung des Bildschirms: Anzahl an Bildpunkten pro Inch (z.B. 300ppi).

Die schwedische TCO-Normen prüfen nach folgenden Kriterien:
- Ergonomie: Bildqualität, Farbwiedergabe, Anpassungsmöglichkeit des Blickwinkels
- Geringe Emissionen durch magnetische und elektrische Felder
- Geringer Energieverbrauch, Energiesparfunktion
- Verwendung Ökologischer Materialien, Recycling-Möglichkeiten

Flimmern entsteht durch zu geringe Vertikal- oder Bildwiederholungsfrequenz. Beim TFT reichen 60Hz um ein flimmerfreies Bild darzustellen.

Ursachen Farbabweichungen:
unterschiedliche Monitorkalibrierung
u
nterschiedliche Lichtverhältnisse
unterschiedliche Bilderfassungsgeräte liefern unterschiedliche Farbdarstellungen

 


Weiterführende Links
www.computeruniverse.net/groups_home.asp

Bewertung: 
0
Bisher keine Bewertung

Röhrenmonitore

Funktion von Röhren-Bildschirmen: (hier mit Lochmaske)
 
  • Die Elektronenstrahl-Röhre ist eine luftleere Glasröhre
  • Ein Heizfaden beheizt Glühkathoden (negativ geladene Elektroden)
    (Glühkathode kann auch direkt beheizt werden)
  • Es gibt 3 verschiedene Glühkathoden (für R, G, B)
  • mit Zunahme der Temperatur in den Glühkathoden treten die negativ geladenen Elektronen in das Vakuum aus und beschleunigen in Richtung der positiv geladenen Anode (Fokussiersystem)
  • Durch Ablenkelektroden (Plattensystem) kann die Richtung des Elektronenstahls verändert werden. Das Plattensystem arbeitet nach Anweisungen der Grafikkarte.
  • die Elektronen treffen durch eine Maske (sorgt für eine genaue Ausrichtung und gegenseitige Abgrenzung der Elektronen)auf die Leuchtschicht (fluoreszierenden Phosphore für Rot, Grün und Blau) und bringen sie (durch Energieabgabe der Phosphore) zum Leuchten

 

 

Bewertung: 
0
Bisher keine Bewertung

TFT-LCD-Monitore

TFT-LCD-Flachbildschirme: (LCD=Liquid Crystal Display)

Ein Pixel eines TFT-LCD-Bildschirms setzt sich aus 3 Subpixeln zusammen (R,G und B).

Pro Subpixel braucht es einen Flüssigkristall, einen TFT (Dünnfilmtransistor) und einen entsprechenden Farbfilter

Ablauf:


1. Unpolarisiertes weißes Licht trifft auf einen Polarisierungsfilter (Horizontalfilter) → nur horizontal orientiertes Licht wird durchgelassen

2. Das Licht trifft nun auf einen TFT (Dünnfilmtransistor)

3. Der TFT ist einer Flüssigkristall-Zelle zugeordnet, der er Stromsignale sendet

4. Kein Stromsignal: Flüssigkristall-Zellen drehen das auftretende horizontale Licht um 90 ° in vertikal schwingendes Licht
oder mit Strom: Licht (Polarisationsebene vom Licht) wird nur teilweise oder gar nicht gedreht

5. Das Licht kommt nun an einem Farbfilter an (je nach Subpixel R, G oder B)

6. Das nun farbige Licht (ob gedreht oder nicht) trifft auf zweiten Polarisierungsfilter (Vertikalfilter), der nur vertikal
schwingendes Licht durchlässt.

 

 

Bewertung: 
0
Bisher keine Bewertung

Computerschnittstellen

Computerschnittstellen

Schnittstellen (I/O- Schnittstellen) sind Anschlussmöglichkeiten externer Geräte auf der Hauptplatine.

Die Aufgaben sind eine Datenübertragung zwischen einzelnen peripheren Geräten und der Zentraleinheit zu ermöglichen, auf formale Richtigkeit der Daten wird ebenfalls geprüft.

Eine Schnittstelle wird durch folgende Charakteristiken definiert:

  • Busbreite (Anzahl der Leitungen über die Binärzahlen übertragen werden)

  • Busgeschwindigkeit (Geschwindigkeit des Datenflusses je Sekunde)

  • Busprotokoll (Codierung der Binärdaten)

Unterschieden wird zwischen seriellen und parallelen Schnittstellen.

Parallele Schnittstelle
8 Datenbit werden gleichzeitig mithilfe von acht prallelen Leitungen übertragen (Bsp.: Drucker).

Serielle Schnittstelle
Datenbit werden zeitlich nacheinander über eine einzige Leitung übertragen (Bsp.: Modem u. Maus).

heute spielen nur noch serielle Schnittstellen eine Rolle.

Auflistung der gängigsten Schnittstellen

RS 232 C o. V.24 (Maus und Modem)

Ist der Schnittstellenstandard mit 25- oder 9-poligen Verbindungen zur seriellen Übertragung und
bietet eine Anschlussmöglichkeit für Maus, Nullmodem-Kabel und Modem.

Centronics (Drucker, Scanner, Brenner u.a)
Prallele Schnittstelle (für 1 Gerät bis 2MBit/s) welche größtenteils für den Anschluss von Druckern benötigt wird.

PS2

Bevor sich USB als Allzweckschnittstelle durchsetzte, wurden Mäuse oder Tastaturen auch über PS2-Anschlüsse mit dem PC verbunden.
 

USB 1.x (“Universal Serial Bus” - Plug&Play-Anschluss)
Preiswerter, langsamer und serieller BUS mit bis zu 12 MitB/s und Anschlussmöglichkeiten für bis zu 127 Geräten.

USB 2.x
Bietet eine Schnittstelle für zahlreiche Geräte wie z.B. Tastatur, Lautsprecher, Drucker, ext. Laufwerke, etc.Gegenüber des langsamen USB1 verfügt man über 480 MBit/s und eine max. Anzahl von 127 Geräten, Abwärtskompatibilität ist gegeben.

USB 3.x
Die Datenrate wurde von 0,48 GBit/s (USB2) auf 4,8 GBit/s erhöht, wobei die Anzahl der anzuschließenden Geräte bei 127 geblieben ist.
Eine Master-/Slave-Architektur kommt zum Einsatz, d.h. dass der sogenannte Master-Controller steuert die Slaves (Endgeräte).
Die bisherige, regelmäßige Abfrage ob neue Geräte angeschlossen wurden, wurde mit einer Methode ausgetauscht, in der die Schnittstelle erst bei Signalen des Endgerätes anspringt (Reduzierung des Stromverbrauchs).

SCSI-1 (“Small Computer System Interface” - parallel, 5MB/s, 8 Geräte) 1986
Eine leistungsfähige Schnittstelle zwischen Gerät und  Bussystem mit relativ schneller Übertragungsrate, welche besonders für die Arbeit mit mehreren Peripheriegeräten geeignet ist(plattformunabhängig).

Chronologische Weiterentwicklung:

SCSI-2 (parallel, 10MBit/s, 8 Geräte) 1989
Ultra-SCSI (parallel, 20MBit/s - 40MB/s, 8 Geräte) 1992
SCSI-3 (Alternative Transfertechnik Apples FireWire-Standard und Fibre Channel hinzugrfügt) 1993
Ultra-2 SCSI (40MB/s - 80MBit/s) 1997
SCSI-160 (160 MBit/s) 1999
SCSI-320 (320 MBit/s - letzte Schnittstelle dieser Art, da hierfür keine weiteren Geräte gebaut wurden) 2002
SCA(16 Geräte, hat SCSI abgelöst) 1999

Firewire (Plug&Play-Anschluss)
Serieller Bus mit digitaler Schnittstelle mit bis zu 400MB/s für max. 63 Geräte.
Die patentierte Schnittstelle von Apple wird hauptsächlich in der Ton-/ und Videotechnik und bei beispielsweise DVD-Brennern und Festplatten eingesetzt.

Thunderbolt (bis zu 10 Gbit/s)
Schnittstelle zwischen Computern, Monitoren, Peripheriegeräten und Unterhaltungselektronik, die von Apple und Intel entwickelt wurden. Wegen der extrem hohen Datenübertragungsrate eine Schnittstelle mit Zukunft die USB3 die Stirn bieten soll..

Ethernet

Ethernet ist ein Datenübertragungsstandard für lokale Netzwerke und Internetzugang zwischen Netzwerkrouter und PC.  Anfänglich gab es Übertragungsraten von 10 Mbit/s, die von Fast Ethernet mit 100 Mbit/s abgelöst wurden(Gigabit Ethernet mit 10 000 MBit/s möglich).

 

DVI (“Digital Visual Interface”)

Ist eine elektronische Schnittstelle zur Übertragung von Videodaten. Im Computer-Bereich entwickelte sich DVI zu einem Standard für den Anschluss vonTFT-Monitoren an die Grafikkarte eines Computers.

HDMI (“High Definition Multimedia Interface“)
Eine ab Mitte 2003 entwickelte Schnittstelle für die volldigitale Übertragung von Audio- und Video-Daten in der Unterhaltungselektronik (+ moderne Grafikkarten) welche DVI abgelöst hat.
Datenübertragungsrate liegt versionsabhängig bei 3,96 GBit/s - 8,16 GBit/s und ab HDMI 2.0 bei 14,4 GBit/s.

IrDA (“Infrared Data Association”)
Die Infrarotschnittstelle spezifiziert Standards für die optische drahtlose Punkt-zu-Punkt Datenübertragung mittels infrarotem Licht (850 – 900 nm) auf max. 1m Entfernung.

Bluetooth
Ein Kurzstrecken-Funkstandard der kabellos eine Kommunikation mit verschiedenen Geräten ermöglicht (Bsp.: Tastatur und Maus).

Serial-ATA
Ermöglicht den Anschluss der Festplatte im PC

PCI (“Peripheral Component Interconnect”)
Ermöglicht den Anschluss für Steckkarten im PC

PCI-E
Nachfolger von PCI, ermöglicht den Anschluss von modernen Grafikkarten mit 3D-Beschleunigung und ist aktueller Standard.

Audioverbindung (Klinke)
Für die analoge Datenübertragung im Audiobereich wird bis heute diese Schnittstelle an der Soundkarte genutzt (Bsp.: Lautsprecher, Mikrofon).

 

QUELLE: ABC der Mediengestaltung, Wikipedia und https://www.lmz-bw.de/medienbildung/medienpraxis/computer-handy-tablet/computerschnittstellen.html

Weiterführende Links:
http://webmagazin.de/mobile/gaengigsten-schnittstellen-mobile-geraete-177636

 

Bewertung: 
1.5
Durchschnitt: 1.5 (2 Stimmen)

Externe Schnittstellen

Verschiedene Schnittstellen

USB verschiedenster Versionen ob nu 2.0 oder 3.0 oder sonst was

PS/2 alter Anschlüsse für Mäuse und Tastaturen

COM1 Serielle Schnittstelle (für Hardware)

VGA Grafikkarten Schnittstelle (Bildschirmanschluss)

LPT1 Parallele Schnittstelle (Druckeranschluss)

Game- /Midiport

- Kopfhörer (Speaker) und Mikrofon (Mic) Anschluss

Bei vor allem Mobilen Geräten gibt es noch Mini- oder Micro-USB anschlüsse. (Kann man nicht wirklich unter Version zusmamenfassen deshalb erwähne ich das nochmal.)

Eine sehr alte Schnittstelle ist noch Firewire, was den Vorteil hat, dass es insgesamt schneller ist als USB. Hat sich aber nie durchgesetzt.

Dann gibt es noch Schnittstellen für Externe Datenträger wie SD-Karten, Micro SD-Karten usw.

Video

VGA - Video Graphics Array (analog)
     - Übertragung von aus dem digitalen umgewandelte analoge Bilddaten
    - Qualitätsverluste durch initiale AD-Wandlung
DVI - Digital Visual Interface (digital, analog möglich)

     - Vorstufe von HDMI
     - gleichzeitige analoge und digitale Übertragung
HDMI - High Definition Multimedia Interface 
(digital, analog möglich)
    - abwärtskompatible, volldigitale Datenübertragung
    - integriertes Kopierschutzkonzept (DRM)

DisplayPort (digital)
    - geringer Platzbedarf
    - ursprünglich nur einseitiger Datenfluss

Geschwindigkeiten von externen Schnittstellen

USB 1.0 : 12 Mbit/s (1,5 MByte/s)  -  seit 1996
USB 2.0 : 480 Mbit/s (60 MByte/s)
  -  seit 2000
USB 3.0 : 4000 Mbit/s (500 MByte/s)  -  seit 2008

Firewire S400 : 400 Mbit/s (50 MByte/s)  -  seit 1995
Firewire S800 : 800 Mbit/s (100 MByte/s)  -   seit 2003
Firewire S3200 : 3200 Mbit/s (400 MByte/s)  -  seit 2008

Thunderbolt : 10 Gbit/s (1,25 GByte/s)  -  seit 2011
Thunderbolt 2 : 20 Gbit/s (2,5 GByte/s)  -  seit 2013

Dies sind Brutto Angaben. Die Netto Geschwindigkeit der Schnittstellen ist von den verwendeten Protokollen und Modi abhängig, die den Datenpaketen einen gewissen Overhead hinzufügen, sowie von Parametern wie Dämpfung u.ä..

Vor der Entwicklung von USB 3.0/3.1 war FireWire die bevorzugte Methode zur Datenübertragung von Audio- und Videomaterial. Im privaten Gebrauch hat sich FireWire nicht durchgesetzt. Auf professioneller Ebene war es jedoch die bevorzugte Schnittstelle. Thunderbolt wird seit 2011 in Apple Rechner integriert und ist seit 2012 auch für Windows Systeme verfügbar. In Zukunft wird sich zeigen, ob Thunderbolt oder USB FireWire den Rang als bevorzugte Shnittstelle ablaufen werden. Im privaten Gebrauch wird es vermutlich wieder auf USB hinauslaufen.

Netzwerkarten und Geschwindigkeiten

Bluetooth : 700 Kbit/s

Ethernet : 10 Mbit/s
Fast-Ethernet : 100 Mbit/s
Gigabit-Ethernet : 1000 Mbit/s
(Anschluss über RJ45-Stecker)

WLAN - IEEE 802.11 : 2 Mbit/s
WLAN - IEEE 802.11h : 54 Mbit/s
WLAN - IEEE 802.11n: 600 Mbit/s

Die schnellste Verbindung ist zwar bisher LWL (Lichtwellenleiter), wird hier aber denke ich nicht von belangen sein, da es weniger in der Medienproduktion zum Einsatz kommt, als in der Netzwerktechnik. Es gibt dort etliche Übertragungsarten und Anschlüsse und sprengt denke ich deutlich den Rahmen der Prüfung. Grob zu wissen, welche Übertragungsarten es auf LAN- und WLAN-Basis gibt und wie schnell diese sind, ist denke ich nicht verkehrt.

Weiterführende Links:

http://www.elektronik-kompendium.de/sites/com/0310281.htm

Bewertung: 
5
Durchschnitt: 5 (1 Stimme)

Hardwareschnittstellen

Die Hardwareschnittstellen dienen zur Übertragung zwischen dem Mikrocomputer und den externen Geräten. Heute haben sie einen geringen Stromverbrauch, längere Verbindungsleitungen und höhere Datenraten.

 

USB (eine universelle Schnittstelle)
Für USB wurden verschiedene Geräteklassen definiert. Das hat den Vorteil, dass das Betriebssystem die Geräte die über diese Schnittstelle laufen, erkennt, ohne dass ein Treiber installiert werden muss.

Hier werden generische Treiber verwendet (herstellerunabhängige).

USB hat die Möglichkeit Endgeräte mit Strom zu versorgen und sie sind "Hot-Plug-&-Play"-fähig (sie können bei laufendem PC angeschlossen oder entfernt werden.

Weitere Schnittstellen sind:

FireWire (überwiegend in der BIld-und Videobearbeitung zum Einsatz)

(e)SATA - External SATA (Festplatten oder Brenner können hier angeschlossen werden)

Steckplätze -Slots (Um einen Desktop-PC flexibel und erweiterbar zu machen, werden PCIe-Steckplätze zur Verfügung gestellt)

RAM (Speicherbänke die über die Steckplätze eingesteckt werden können)

Sockel - Socket (Steckplatz für den Mikroprozessor)

Chipsatz (ist für die Steuerung des Datenflusses auf der Hauptplatine zuständig. Er besteht aus der North- und Southbridge. Die Southbridge steuert den Datenfluss zu den verschiedenen Controllern der Schnitstellen und ermöglicht somit die Kommunikation mit der "Außenwelt" (Tastatur, Maus, Festplatte usw.).

 

Für weitere Info´s könnt ihr auch hier gucken: http://www.elektronik-kompendium.de/sites/com/0310281.htm

 

Zum PDF-Anhang: Quellen sind das Kompendium und Internet.

Bewertung: 
0
Bisher keine Bewertung

Video-Schnittstellen

VGA (D-Sub)

VGA (Video Graphic Array) ist der analoge
Standardanschluss, der sich auch heute noch an vielen Rechnern und Beamern befindet.

unterstützt keine Audioübertragung
Maximale Auflösung: 2.048 x 1.536 bei 60Hz


DVI

Der digitale Nachfolger von VGA heißt DVI (Digital Visual Interface). DVI überträgt die Daten ohne Qualitätsverlust an den Monitor oder Beamer und liefert eine bessere Bildqualität als VGA. Um eine Kompatibilität zu VGA-Monitoren zu erzielen, gibt es DVI auch in einer Variante, die sowohl ein digitales als auch ein analoge Videosignal zur Verfügung stellt (DVD-I). Um ein VGA Kabel anschließen zu können, benötigen Sie einen Adapter.

Im Normalfall wird über DVI kein Audio übertragen
Einige Hersteller von DVB-Receivern (z. B. Dream Multimedia) und Grafikkarten (AMD Radeon HD) übertragen neben hochaufgelösten digitalen Videodaten auch digitale Audiodaten über die DVI-Buchse.


Arten von DVI Schnittstellen:

DVI-I (Integrated)

DVI-I-Kabel können digitale und analoge Signale übertragen

DVI-I Single Link (18+5 Kontakte)
Maximale Auflösung: 1920 x 1200 bei 60 Hz

DVI-I Dual Link (24+5 Kontakte)
Maximale Auflösung: 2560 × 1600 bei 60 Hz


DVI-D (Digital)

DVI-D-Kabel können nur digitale Signale
übertragen

DVI-D Single Link (18+1 Kontakte)
Maximale Auflösung: 1920 × 1200 bei 60 Hz

DVI-D Dual Link (24+1 Kontakte)
Maximale Auflösung: 2560 × 1600 bei 60 Hz
oder 1920 × 1080 bei 144 Hz


Bei DVI-D-Kabeln mit nur 12 + 1 Pins werden keine DDC-Daten übertragen, so dass das Betriebssystem den Bildschirm nicht mehr automatisch erkennen kann.


DVI-A (Analog)

DVI-A Kabel (12+5 Kontakte) können nur analoge Signale übertragen, sie werden in der Praxis nur bei DVI zu VGA Adaptern eingesetzt.


HDMI

HDMI (High Definition Multimedia Interface) ist eine digitale Schnittstelle für Video- und Audiosignale und kommt deshalb vorwiegend im Bereich der Unterhaltungselektronik zum Einsatz. Ein Unterschied zu DVI ist neben der zusätzlichen Übertragung des Tons, dass mit HDMI ein Kopierschutz (HDCP) möglich ist.

Audioübertragung möglich
Maximale Auflösung (ab HDMI 2.1):
10.328 x 7.760 (10K)


Displayport

DisplayPort, kurz DP, ist eine Schnittstelle zur Übertragung von Audio- und Videosignalen zwischen Computer und Bildschirm. DisplayPort soll die Anschlüsse VGA und DVI ablösen. Im Gegensatz zum HDMI Stecker ist hier eine mechanische Verriegelung vorgesehen. Ursprünglich wurde die Displayport entworfen, um den Umstieg auf digitale Schnittstellen für eine bessere Bildqualität zu beschleunigen.

Audioübertragung möglich
Maximale Auflösung: 5.120 x 2.880 (5K)

AnhangGröße
PDF icon Videoschnittstellen.pdf447.37 KB
Bewertung: 
0
Bisher keine Bewertung

Computersicherheit

Hier ein Handout, dass auch schon von unseren Lehrern korrigiert worden ist und somit alles wichtige beinhaltet.

AnhangGröße
PDF icon <p>Computersicherheit.pdf</p> 1.52 MB
Bewertung: 
5
Durchschnitt: 5 (1 Stimme)

Energieoptionen

Einstellbare Energieoptionen sind:

(Ergänzung bitte)

1. Energiesparplan

2. Festplatte ausschalten nach...

3. Desktophintergrundeinstllungen (z.B. Diashow)

4. Drahtlosadaptereinstellungen

5. Energiesparen (z.B. Deaktivieren nach...., Hybriden Standbymodus)

6. USB-Einstellungen

7. Netzschalter und Zuklappen

8. Prozessorenenergieverwaltung

9. Bildschrim verdunkeln, abschalten; Helligkeit, ....)

10. Multimediaeinstellungen

11. Internet Explorer

12. Akku

 

Diese Einstellungen können jeweils in Netz- oder Akkubetrieb verändert werden (optimiert werden)

Weiterführende Links:

http://www.greencomputingportal.de/artikel/referenz-windows-7-energieoptionen-erklart/
http://www.edv-lehrgang.de/energieoptionen-strom-sparen-mit-energiesparmodus/
http://www.oeko-fair.de/clever-konsumieren/wohnen-arbeiten/oeko-fair-im-buero/computer-fax-und-co/energieeffiziente-geraete-erkennen/energieeffiziente...

Bewertung: 
0
Bisher keine Bewertung

Glasfaserkabel (LWL)

• teuerste Kabel, umfangreiche Verlegung
• große Datenübertragungsraten
• nicht anfällig gegen elektromagn. Störungen
• Abhörsicherheit
• Blitzschutz

Anwendungsgebiete:

• Verbindung von Leistungskomponenten in einer strukturierten Verkabelung

Aufbau:
• Innenleiter aus Quarz oder Glas, der mit verschiedenen Schichten ummantelt ist
• äußere Schichten dienen der mechanischen Stabilität
• Auf beiden Seiten befindet sich eine Sende- und Empfangseinheit, die die elektrischen
Signale in Lichtimpulse umsetzt und umgekehrt (mittels Leucht- oder Laserdiode und Photodioden)

Dispersion: Strahlenüberlagerung durch unterschiedliche Strahlenlaufzeiten (je nach
Einfallswinkel entstehen unterschiedliche Laufzeiten)

Tags: 
Bewertung: 
0
Bisher keine Bewertung

Grafikkarten

Die Grafikkarte ist für die Monitordarstellung verantwortlich. Sie wird als Erweiterungskarte mit dem Motherboard verbunden oder ist direkt in den Chipsatz des Motherboardes integriert und verfügt über einen Prozessor (GPU), einen Grafik-/Videospeicher (Video-RAM), einen Chip zur Umwandlung von digitalen in analoge Signale (RAMDAC) sowie über Schnittstellen für externe Geräte wie Monitor oder Fernseher.
Die erste Grafikkarte, die 1981 in einem PC verwendet wurde, konnte Text einfarbig darstellen, doch Verbesserungen folgten schnell. Am bekanntesten wurde die VGA-Karte, die IBM 1989 auf den Markt brachte.
Mit der Entwicklung und Verbreitung der PCs wurden auch die Grafikkarten weiter verbessert und konnten, indem sie über eine eigene CPU sowie über einen eigenen Grafikspeicher verfügten, nicht nur Text, sondern auch komplexere grafische Funktionen darstellen. Auch die Verbreitung von 3D-Computerspielen und leistungsfähigere Grafikkarten bedingten sich gegenseitig. Aktuell besitzen Grafikkarten bis zu 512 MB Grafikspeicher, jedoch auch weitaus größere Speicher (bis 1.536 MB) sind erhältlich.
Derzeitiger Mindeststandard bei der Darstellung ist der VESA-Modus (Video Electronics Standards Association) mit einer Auflösung von maximal 1280 x 1024 Punkten bei 16 Bit Farbtiefe.
Neben Grafikkarten für den Einsatz im Office-Bereich und bei Spielen gibt es auch Karten für den professionellen Einsatz z.B. bei aufwendigen Bildbearbeitungen oder CAD-Anwendungen.
 

Grafikkarten und deren Mainboardanbindung

Hardwareschnittstellen zum System

   • bekannteste Hardwareschnittstellen für Grafikkarten: PCI, AGP und PCI-Express
      (früher waren auch ISA und VESA Local Bus gängig)
   • diese Schnittstellen sind entweder Bussysteme oder Direktverbindungen (AGP, PCI-Express),
      die den Buscontroller mit der Grafikkarte verbinden
   • Spezifikation der Schnittstellen wird meist durch Interessenverbände vorgenommen
     (in denen sowohl Controller-/Grafikkarten-/Grafikchiphersteller Mitglied sind)
      --> deswegen funktionieren im Idealfall alle konformen Grafikkarten mit allen konformen Controllern!

Grafikspeicher

   • Grafikspeicher dient zur Ablage der im Grafikprozessor (GPU) verarbeiteten Daten und als Bildspeicher
     („Framebuffer“) à das sind digitale Bilder, die später auf dem Computer-Bildschrim ausgegeben werden
   • Größe des Grafikspeichers bestimmt die maximale Farbtiefe und Bildauflösung
   • Grafikspeicher leicht zu errechnen:
      - z.B. gewünscht ist eine Auflösung von 1600 x 1200 und eine Farbtiefe von 24 bit
      - Anzahl der Bildpunkte berechnen  (1600 x 1200 = 1.920.000 Pixel insgesamt)
      - für jedes Pixel 24 Farbinformationen: Pixelanzahl x Farbtiefe (1.920.000 x 24 = 46.080.000 Bit = 5.760.000 Byte)
      - Umrechnung in Byte bei 1 MB = 1.048.576 Byte (5.760.000 Byte : 1.048.576 = 5,49 MB
         Grafikspeicher erforderlich)
   • heute werden nur noch Grafikkarten mit viel mehr Speicher gebaut,
      als zur reinen Bildspeicherung notwendig wäre
   • beim Rendern dreidimensionaler Grafiken werden hier zusätzlich zum Framebuffer die Daten
      der Objekte (z.B. Größe, Form, Position, Textur) gespeichert
   • besonders die immer höher auflösenden Texturen haben für einen starken Anstieg
     der Speichergröße gesorgt
   • Speichergröße aktueller Grafikkarten liegt im hohen Megabytebereich
     (bei 256 MB, 512 MB, 1024 M, 2048 MB)
   • Spielegrafikkarten haben Speichergrößen von 2 GB bis 4 GB
   • bei Onboard-Lösungen wird meist der Gauptspeicher des Systems als Grafikspeicher genutzt
     („Shared Memory“)
   • Zugriff erfolgt über das jeweilige Bussystem und ist deshalb langsamer als direkt
     angebundener Speicher

Grafikprozessor (GPU)

   • dient zur Berechnung der Bildschirmausgabe
   • Mitte der 1990er Jahre kamen die ersten 3D-Beschleuniger auf den Markt
     - waren in der Lage, einige Effekte und dreiecksbasierte Algorithmen (wie Z-Puffer/Texture Mapping)
        und Antialiasing selbstständig durchzuführen
     - besonders den Computerspielen halfen solche zusätzlich zu installierenden Steckkarten
       zu einem Entwicklungsschub
   • heute sind GPUs wegen ihrer Spezialisierung auf Grafikberechnungen den CPUs
     in ihrer Rechenleistung überlegen


Kühllösungen

   • notwendig aufgrund der hohen thermischen Verlustleistung durch zunehmende Komplexität
     von Grafikprozessoren/Grafikspeicher
   • z.B. Prozessorkühler
   • Grafikkarten verbrauchen mit einem Grafikprozessor (GeForce 8800 Ultra) bis zu 175 W Leistung,
     die vollständig als Wärmeenergie abgeführt werden muss
   • zur Abführung der Wärmeenergie existieren mehrere Ansätze:

passive Luftkühlung

• durch Kühlkörper wird die thermische Energie durch Konvektion an die
   Umgebungsluft abgegeben
• nur bei geringen Leistungen oder mit sehr großen Kühlkörpern möglich
• oft werden auf beiden Seiten der Grafikkarte großflächige Kühlkörper angebracht,
   die mit einer Heatpipe verbunden sind
• Problem: Kühlkörper haben hohes Gewicht, dies führt zu einer hohen mechanischen
   Belastung des Steckplatzes

aktive Luftkühlung

• die thermische Energie wird über einen Kühlkörper an die Umgebungsluft abgegeben,
   die durch Lüfter umgewälzt wird
• einfachste und preiwerteste Variante, verursacht allerdings Störgeräusche

Wasser-kühlung

• wenn für die CPU eine Wasserkühlung eingesetzt wird, kann auch Grafikkarte
   eingebunden werden
• die thermische Energie wird dann an das Wasser im Kreislauf
   und von dort über einen Radiator an die Umgebungsluft abgegeben
• ermöglicht einen Transport von großen Wärmemengen, ist aber auch aufwendig/teuer


RAMDAC („Random Access Memory Digital/Analog Converter“)

   • = Chip, der für die Umwandlung von digitalen (Videospeicher) in analoge Bildsignale (Monitor)
      verantwortlich ist
   • von ihm werden die Signalausgänge angesteuert
   • kann auch im Grafikprozessor integriert sein

Externe Signalausgänge

VGA-Out

• an einer 15-poligen D-Sub-Buchse wird eine analoges RGB-Signal hergestellt
• über ein VG-Kabel mit entsprechendem Stecker werden CRT-Monitor
   (Röhrenmonitor), Projektor oder Flachbildschrim angeschlossen

DVI-Out

• liefert ein digitales Signal und dmait die bester erreichbare Bildqualität
   an Bildschirmen mit DVI-Eingang
• die meisten heutige Grafikkarten sind mit einem DVI-I-Anschluss („i“ für „integrated“)
   ausgestattet und liefern damit zusätzlich ein analoges RGB-Bildsignal
• somit können mit einem (meits beiliegenden) passiven Adapter auch Bildschirm mit
   analogem D-Sub-Eingang angeschlossen werden
  (die Bildqualität entspricht dann jedoch mehr der des S-Sub-Ausgangs)

• es existieren weiterhin die Varianten DVI-D mit ausschließlich digitalen
  Signalleistungen
• bei DVI-D sind die Varianten Single-Link-DVI und Dual-Link-DVI zu unterscheiden
   - letzterer beinhaltet doppelt so viele Datenleistungen,
      kann somit größere Bandbreite liefern,    
   - ist notwendig für Auflösungen größer als WUXGA (1920x1200), um trotz größerer
     Datenmengen pro Bild eine Bildwiederholfrequenz von mind. 60 Hertz zu
     gewährleisten

HDMI-Out

• HDMI = „High Definition Multimedia Interface“
• seit 2007
• hier wird das Videosignal auch digital und gegebenenfalls mit HDCP verschlüsselt
   ausgegeben
• es könen auch DVI-D-Signale übertragen werden, d.h. DVI-Geräte sind kompatibel
   zu HDMI
• Unterstützung von HDCP ist bei DVI jedoch optional, sodass nicht alle Geräte derartig
   geschützte Signale wiedergeben können
• Übertragung von Tonsignalen ist jedoch nur über HDMI-Verbindungen möglich

Display Port

• relativ neuer Verbindungsstandard für Bild-/Tonsignale
• er ist kompatibel zu VGA, DVI und HDMI 1.3
• unterstützt Kopierschutzverfahren HDCP und DPCP
   („Display Port Content Protection“)
• Verbreitung beschränkt sich Anfang 2010 auf professionelle Grafikkarten, sowie einige
   Modelle der AMD Radeon HD 5000-Serie und eine proprietäre Version am MacBook

TV-Out

(= Video-Out)

• der als Cinch- oder S-Video-Buchse ausgeführte TV-Ausgang kann mit einem
   Fernseher/Projektor verbunden werden
• man kann so mit mehreren Bildschirmen (PC-Bildschrim +  Fernseher) arbeiten
• allerdings ist die Signalqualität des Anschlusses meist nicht sehr hoch, da es sich um
   ein analoges FBAS- oder S-Video-Signal handelt und die meisten Karten nicht den
   nötigen Schaltungsaufwand treiben, um aus diesen Signaltypen das
    Bestmögliche herauszuholen

 


Software-Grafikschnittstellen

   • notwendig, um Grafikkarten benutzen zu können, ohne Hardware und Software für jede
      einzeln zu entwickeln
   • Gerätetreiber stellen Verbindung zwischen Hardware & Software her
     - ohne diese müssten Programme die Hardware direkt ansprechen
     - würde aufgrund der Unterschiede zwischen Grafikarten zu einer hohen Spezialisierung
        und damit zu einem hohen Programmieraufwand für die Unterstützung vieler Grafikkarten führen
    - Grafikkartentreiber können ebenfalls sehr unterschiedliche Funktionen anbieten
    - deswegen wurden verschiedene Grafik-APIs entwickelt, die den Zugang zu diesen Funktionen
       erleichtern sollen (z.B. OpenGL oder DirectX)
     - d.h. ermöglichen dem Programmierer, einfach und unabhängig von der Grafikkarte
       2D- & 3D-Grafik anzuzeigen

 

Bewertung: 
5
Durchschnitt: 5 (3 Stimmen)

Scannen

Wie weit wird die Frage auf gestalterische oder technische Aspekte abzielen? 

Gestalterisch scannen? Hm?! 

Leider ist das bei den letzten Prüfungen häufig nicht klar getrennt gewesen. 

 

Ich fange mal mit den technischen Aspekten an: 

Herzstück des Scanners ist zumeist ein CCD-Sensor oder CCD-Element, in dem viele lichtempfindliche Elemente nebeneinander sitzen – so viele, wie der Scanner maximal Pixel in der Breite erkennen kann. Damit er R,G und B unterscheiden kann, hat er 3 Zeilen von CCD-Elementen. Vor ihnen sitzt ein Prisma, das das Licht aufspaltet, damit die roten, grünen und blauen Bestandteile jeweils auf einer anderen der drei CCD-Zeilen landet. 

Wird ein CCD-Element von Licht getroffen, produziert es einen geringen Strom – je mehr Licht, desto mehr Strom. Dieser Strom wird in einem Analog-Digital-Wandler in Zahlen von 0 (Schwarz) bis 255 (Weiß) umgewandelt, bei 16 Bit entsprechend von 0 - 65535. 

Die Aufspaltung in die drei Farben R, G und B kann auch mit nur einer Sensorzeile (also nicht dreien wie zuvor beschrieben) erfolgen. Dazu muss jede Scanzeile dreimal "fotografiert" werden: einmal mit roten, dann mit grünem und abschließend mit blauem Licht. Da kann mit entsprechenden eingefärbten LEDs erfolgen, die jeweils ganz kurz aufblitzen. Billige Scanner sind heute häufig so aufgebaut. Wenn man bei offenem Deckel schnell mit den Augen klimpert, sieht man die verschiedenen Farben. Es handelt sich dabei um extrem flache Scanner. 

Ein Schrittmotor zieht einen Schlitten mit einer röhrenförmigen Lampe (geht über die gesamte Abtastbreite) und dem CCD-Sensor an der Scanvorlage vorbei. Der Motor stoppt immer kurz, dann wird ein „Foto“ einer Zeile gemacht, anschließend rückt er den Schlitten um ein winziges Stückchen weiter und wieder wird eine Zeile aufgenommen. Dieser Motor kann zumeist sehr kurze Schrittchen machen, die feiner sein können als die Auflösung des CCD-Sensors in der Breite. Mein alter Scanner hat beispielsweise eine Auflösung von 1200 x 2400 dpi. 

Er „sieht" 1200 Pixel pro Inch in der Breite und bis zu 2400 Schrittchen pro Inch schafft der Motor und „sieht" entsprechend viele in der Länge. Damit entstehen theoretisch rechteckige Pixel, die die Scansoftware zu doppelt so vielen quadratischen interpolierend auseinander rechnet. 

Was die Hardware tatsächlich kann, nennt man physikalische oder optische Auflösung. 

Die Scansoftware kann die Auflösung eventuell aufblasen. Das Ergebnis sind mehr Pixel, als sie der Scanner tatsächlich sehen kann. Das nennt man interpolierte Auflösung (ist nur etwas für die Werbeabteilung der Herstellerfirma), Beispiel 4800 x 9600 dpi. 

Scanner können Aufsichtvorlagen (auf Papier) und/oder Durchlichtvorlagen (Dias, Röntgenbilder) scannen. 

Aufsichtvorlagen haben einen geringen Tonwertumfang, Durchlichtvorlagen einen wesentlich größeren. 

Deshalb müssen Diascanner einen wesentlich größeren Kontrastumfang wahrnehmen können als Aufsichtscanner. Der Kontrastumfang wird auch als Dynamikumfang bezeichnet. Ist er zu gering, saufen dunkle Partien in Schwarz ab und helle haben keine Zeichnung und werden "überbelichtet" nur weiß dargestellt. 

Eine hohe Scanauflösung hat nur für den Strichbereich Bedeutung. Im Strichbereich sollte die Auflösung nicht unter 800-1000 dpi liegen. 

Die Auflösung, mit der optimalerweise gescannt wird, sollte nicht dem Zufall überlassen oder nach dem Motto "je höher, desto besser" festgelegt werden. 

Zum Verständnis: 
Graustufen werden bei Ausgabe auf einem Belichter in eine 16x16-Matrix umgesetzt, d.h. ein Rasterpunkt enthält idealerweise 256 Einzelpixel. Wird nun eine Halbtonvorlage im 60er-Raster ausgegeben, wird jedes Graustufenpixel in eine 16x16-Matrix umgesetzt. Ein Belichter mit einer Auflösung von 2540 dpi kann solch einen Rasterpunkt gerade wiedergeben. Ein 60er- Rasterpunkt entspricht ca. 150 dpi und das wäre auch theoretisch die erforderliche Scanauflösung. 

Da jedoch bei der Analog-Digital-andlung Verluste auftreten, wird hier ein zusätzlicher Q-Faktor (Q für Qualität) eingeführt. Dieser Faktor ist in der Regel 1,5, im Extremfall 2. 

Aus diesen Zusammenhängen ergibt sich die folgende Formel zur Berechnung der idealen Scanauflösung:

Scan-Auflösung = Rasterweite x 1,5 x Skalierungs-Faktor


Ein Beispiel: Es soll die Scan-Auflösung für ein 60er-Raster bei 1:1 Skalierungs- Faktor errechnet werden. Da der ert für Raster in cm berechnet worden ist, muß er in lpi umgerechnet werden (durch Multiplizieren mit 2.54). 

Scanauflösung = 150 dpi x 1.5 x 1 = 225 dpi 

Die resultierende Dateigröße wäre bei einer A4-Seite für Schwarz- Weiß-Halbton 5,77 MB,für Farbe 17,3 MB. Bei 300 dpi würde sich die nahezu doppelte Dateigröße ergeben. Das zeigt, wie wichtig es ist, die richtige Auflösung zu wählen, da ansonsten Speicherbedarf und Verarbeitungszeiten drastisch ansteigen. 

Für ein 48er-Zeitungsraster und einen Skalierungs-Faktor von 50% ergibt sich folgende Rechnung: 

Scanauflösung = 122 dpi x 1,5 x 0,5 = 91,5 dpi 

Soll auf das Doppelte vergrößert werden, erhöht sich entsprechend die Auflösung aus der Formel: 

Scanauflösung =1 22 dpi x 1,5 x 2 = 366 dpi.

Quelle: http://www.silverfast.com/show/calc-resolution/de.html

 

Gestalterische Aspekte:

Moirè
Da ein Scanner Bilder in ein starres Pixelmuster zerlegt, kann es zu Moirès kommen, wenn die Vorlage ebenfalls ein starres Muster (z. B. gedruckte, regelmäßig gerasterte Vorlagen, Bilder von Geweben, feinen Ziegelmaueren …) darstellt. Damit die Moirès nicht sichtbar werden, können Filter eingesetzt werden, die letztlich den Scan unscharf zeichnen. Bei guter Scansoftware kann man die Rasterweite der gedruckten Vorlage eingeben. Ansonsten helfen Tricks wie Vorlage schief auf den Scanner legen und mit höherer Auflösung als gewünscht einscannen. Abschließend kann man es in Photoshop grade drehen und verkleinern. Dadurch werden alle Pixel neu berechnet und das Moirè verschwindet (hoffentlich).

Rauschen
Jedes optische und akustische Gerät rauscht. Bildrauschen kennt man von Handy-Fotos, die bei wenig Licht gemacht wurden, die haben eine sandige Struktur.
Scan-Programme können Vorlagen mehrfach einscannen und abschließend zu einem Bild verrechnen. Dadurch wird das Rauschen des Scanner deutlich reduziert. Das ist besonders in dunklen Bereichen von Diascans wichtig. (Aber wer macht heute noch Dias?)

Newtonsche Ringe
aus Wikipedia, der freien Enzyklopädie:
„Newtonsche Ringe (nach Isaac Newton) oder allgemein Interferenzfarben nennt man Farbsäume, die durch Interferenzan dünnen transparenten Schichten entstehen.“

Farbsäume bei Dias, die in Glas gerahmt sind. Die newtonschen Ringe entstehen durch die unterschiedlich dicke Luftschicht zwischen Glas und Diafilm. Der Effekt lässt sich durch Aufrauhen vermeiden (Anti-Newton-Glas).
Sie können genauso auftauchen, wenn man ein Dias direkt auf die Glasplatte des Scanners legt, also ungerahmt.

Übergroße Vorlagen
Möchte man ein A3 großes Blatt auf einem Scanner, der nur gut A4 schafft, einscannen, kann man es in 2 Durchgängen scannen und anschließend in Photoshop zusammenbauen. Da die Scansoftware meistens die Helligkeit und den Kontrast automatisch regelt, werden beide Scans unterschiedlich hell sein. Man müsste in einem solchen Falle also zusehen, die Automatik der Scansoftware abzuschalten, damit man zwei gleich “belichtet” Scans erhält.

Man könnte auch zwei Elemente mitscannen, eins weiß, eins schwarz und, wenn im Scanprogramm vorhanden, mit der Pipette den Weiß- und den Schwarzpunkt setzen.

Nicht vergessen bei Farbstichen: Scanner bzw. Scansoftware kalibrieren (richtiger: profilieren). it8 Karte einscannen und mit Profilierungssoftware Scanner-Profil erstellen. 

Geschrieben von Daniel Graefen

Bewertung: 
4
Durchschnitt: 4 (1 Stimme)

Server

Zentraler Rechner in einem Netzwerk, der den Arbeitsstationen/clients Daten, Speicher und Ressourcen zur Verfügung stellt. Auf dem Server ist das Netzwerk-Betriebssystem installiert, und vom Server wird das Netzwerk verwaltet. Im www sind Server Knotenpunkte des Netzes.

Ein Server kann aus einem Rechner mit zugehörigem Betriebssystem und einem Dienstprogramm bestehen.
Es gibt verschiedene Server-Klassen:

  1. File-Server: Stellt seinen clients Dateien und Platz auf dem Dateisystem bereit. Zusätzlich übernimmt er die Sicherung der Benutzerdateien.
  2. Applications-Server: ermöglicht dem Anwender den Zugriff auf ein oder mehrere Anwendungsprogramme.
  3. Datenbank-Server: Auf ihm läuft eine große Datenbank. Die Aufgabe des Servers ist die Verwaltung und Organisation der Daten, die schnelle Suche, das Einfügen und das Sortieren von Datensätzen.
  4. Internet-Server: stellt Internet- und Intranet-Dienste bereit. Typische Dienste umfassen das WorldWideWeb, den DomainName-Service, sowie e-mail...
  5. Media-Server: stellen Multimedia-Daten (Audio-, Videoclips) in Echtzeit und höchster Dienstqualität zur Verfügung.
Bewertung: 
0
Bisher keine Bewertung

Zentraleinheit (CPU)

Die Zentraleinheit:
Die Zentraleinheit setzt sich aus Leitwerk, Speicherwerk und Rechenwerk zusammen.


– Leitwerk (Steuerwerk)
koordiniert alle an der Ausführung eines Programms beteiligten Operationen eines Computers.

– Speicherwerk (Hauptspeicher)
Es enthält das in Arbeit befindliche Programm, die dafür notwendigen Daten und vorübergehend die Ergebnisse, ist somit das Gedächtnis des Computers.

– Rechenwerk (Mikroprozessor)
Es führt die logischen Rechenoperationen durch.


Prozessortypen (INTEL):
8086 / 87 16 Bit
286 / 87 multitaskingfähig
386 / 87 32 Bit
486 integrierter CoPro
Pentium 64 Bit
Pentium II 450 MHz
Pentium III-IV

Peripherie:
Peripherie ist prinzipiell alles, was nicht zur Zentraleinheit gehört!
Dazu gehören Eingabe- und Ausgabegeräte genauso, wie Motherboard, interne Steckkarten, Bussysteme etc.


Dateneingabegeräte:
Tastatur, Maus, Messgeräte, Ausweisleser, DFÜ, Scanner, Speichermedien

Datenausgabegeräte:
Lautsprecher (Soundkarte), Drucker, Plotter, Bildschirm, Belichter

Externe Speicher:
Wechselplatten (zip, jazz, externe Festplatten), Bandlaufwerke (Streamer, DAT-Bänder), CD-ROM, Magnetplattenspeicher

Bewertung: 
0
Bisher keine Bewertung

Geräte kalibrieren

Digitalkamera

Zur Profilierung einer Digitalkamera braucht man neben der Color-Managementsoftware ein spezielles Testchart. Auf dem Testchart befinden sich verschiedene Farben mit unterschiedlichen Helligkeitswerten bzw. Sättigungswerten. Die Oberfläche sollte halbmatt sein, damit Refelxionen vermieden werden können.
Da die Beleuchtung naturgemäss in der fotografischen Aufnahem eine große Rolle spielt, werden verschiedene Berleuchtungsitutaion eingestellt, dementsprehend also Profile für verschiedene Licharten und Einsatzzwecke.
Der korrekte Weißabgleich ist die Grundvorraussetzung für die Erstellung eines guten Kameraprofils.


Scanner
Um ein Scannerprofil zu erzeugen, wird eine Testvorlage (Testchart IT8-Vorlage) gescannt.  Alle Korrekturfunktionen des Scanners müssen ausgestellt sein, damit die „rohen“ Daten erfasst werden können.
Testvorlagen nach ISO 12641 haben 228 einheitliche genormte und 36 vom Hersteller definierte Farbfelder.
Das Profilerzeugungsprogramm setzt die CIELAB oder CIEXYZ Farbwerte der Testvorlage in Beziehung zu den vom Scanner ermittelten RGB-Farbwerten und errechnet das ICC-Profil.

ICC-Profil speichern:
meistens bietet die Profilisierungsoftware das speichern des Profils direkt an, sollte es zu einem späteren Zeitpunkt gespeichert werden oder ein anderes Profil soll gespeichert werden:

Mac OS X: Festplatte>Users>Username>Library>ColorSync>Profiles
Windows 2000 und XP: Festplatte/WINNT/system32/spool/drivers/color

Bei Eingabergeräten wie dem Scanner oder der Digitalkamera kann man korrigierende Eingabe-Profile auf zwei Arten einsetzen:

Scannt oder fotografiert man ein Bild, so können die im Eingabe Profil stehenden
Korrekturwerte gleich ins Bild eingerechnet werden. (z.B: Tiff-Datei mit eingebetten Profil)
Die andere Möglichkeit besteht darin die erfassten Bilddaten zunächst unkorrigiert zu lassen und den Bilddaten das Profil nur „anzuhängen“. Das ermöglicht es später unterschiedliche Profile auf die Bilddaten anzuwenden.z.B. um flexibler auf auf Farbabweichungen zu reagieren.

Monitor
Der Monitor ist im Workflow die visuelle Schnittstelle zwischen dem Gestalter und den Farben des Bild, der Grafik. Deshalb ist es unabdingbar, dass nicht nur die Eingabegeräte und Ausgabegeräte profiliert
werden, sondern auch die Ausgabe auf dem Monitor.

Leider entstehen die ersten Fehler beim Monitor schon bei der Produktion des Geräts, denn die
Qualität der verwendeten Bauteile beeinflusst ebenso die Farbwiedergabe, wie das Betriebssystem, das
Zusammenspiel von Monitor und Grafikkarte, die Einstellungen des Benutzers, und das Alter des Geräts.

Es gibt zwei Arten der Profilierung:

Visuelle Profilierung: Der Benutzer erstellt z.B unter Mac OSX mit dem Monitorkalibrierungs-Assistenten ein Monitorprofil, die Einstellungen erfolgen durch die numerische Eingabe der Farbtemperatur und des
Monitorgammas sowie nach der visuellen Beurteilung.
Das Profil entspricht dann natürlich NICHT ganz der Objektivität eines Messgerätes.

Messtechnische Profilierung:
Es wird eine Reihe von Farbfelder auf dem Monitor angezeigt, die dann mit einem Colorimeter oder
Spektralfotometer eingemessen werden. Über die Profilierungsoftware werden die gemessenen Daten mit den Soll-Werten der Farbfelder verglichen.
Der Soll-Ist-Vergleich gibt Auskunft darüber, wie viel Farbe der Monitor anzeigen kann und wie genau.
Die Information aus dem Soll-Ist-Vergleich werden nun in einem ICC-Monitor-Profil zusammengefasst.
Dieses ICC-Profil wird dann im Betriebssystem als Standart-Profil für den Monitor eingetragen. Jedes mal wenn eine Anwendung ein Bild an den Monitor überträgt, wird die Anzeige dieses Bildes unter Verwendung der im ICC-Profil gespeichterten Infos korrigiert.

Grundregeln der Monitorkalibrierung/profilierung

- Der Monitor soll wenigstenseine halbe Stunde in Betrieb sein.
- Kontrast und Helligkeit müssen auf die Basiswerte eingestellt sein.
- Die Monitorwerte dürfen nach der Messung und anschließender Profilierung nicht mehr verändert
  werden.
- Bildschirmschoner und Energiesparmodus müssen deaktiviert sein.

Bei Tintenstrahldrucker und Laserdruckern wird ein Testchart ausgedruckt und anschließend vermessen. Das aus den Messdaten generierte Ausgabe-Profil korrigiert die Farbabweichungen. Jedes Ausgabegerät hat untrschiedliche Abweichungen und benötigt immer sein individuelles Korrrektur-Profil. Die Bilddatei wird allerdings nicht verändert.

Quellen: Kompedium der Mediengestaltung, Informationen verbreiten (Schulbuch)
und besonders zu empfehlen wegen der guten Erklärungen : http://www.cleverprinting.de/ratgeber2009.html

Bewertung: 
0
Bisher keine Bewertung

Farbe messen

Weiterführende Links:

http://www.fwlook.de/konzeption-und-gestaltung/farbbeurteilung-fur-die-abschlussprufung/

http://www.idd.tu-darmstadt.de/media/fachgebiet_idd/studium_und_lehre/vorlesungen_4/praktische_farbmessung/ss2011_2/prfm_08_farbmessgerte_070611_v2.pdf

 

Aufbau eines Spektralfotometer zur Farbmessung

Grundsätzlich ist der Aufbau von Farbmessgeräten dem Sehen und Empfinden des menschlichen Auges nachempfunden.

Vorgang beim Menschen:

  1. Farbe wird von einer Lichtquelle (Strahlung) beleuchtet
  2. Ein Teil der Strahlung wird absorbiert, der Rest reflektiert
  3. Reflektiertes Licht reizt Zapfen im Auge (rote, grüne und blaue Farbrezeptoren) 
  4. Diese Erregung löst über den Sehnerv im Gehirn die Farbempfindung aus

Vorgang beim Messgerät:

  1. Farbe wird von einer Lichtquelle (Strahlung) beleuchtet
  2. Ein Teil der Strahlung wird absorbiert, der Rest reflektiert
  3. Reflektiertes Licht gelangt durch die Optik auf den Sensor
  4. Der Sensor misst für jede Farbe das empfangene Licht und leitet die Werte an einen Rechner weiter
  5. Im Rechner werden sie nach Funktionen (ähnliche Bewertungskriterien wie Zapfen im Auge) gewichtet
  6. Als Ergebnis erhält man die Normfarbwerte X,Y,Z welche in Koordinaten der Farbräume umgerechnet werden

Berechnung des CIE LAB - Farbabstands (^ soll in der Formel Delta heißen)

Farbabstand = ^E*² = ^L*² + ^a*² +  ^b*²

Dabei gilt:

  • ^L*² = ^L (des Ist-Wert) - ^L (des Soll-Wert) --> L=Helligkeit --> 0=absolut Schwarz; 100=absolut Weiß
  • ^a*² = ^a (des Ist-Wert) - ^a (des Soll-Wert) --> -a = grün ; +a = rot
  • ^b*² = ^b (des Ist-Wert) - ^b (des Soll-Wert) --> -b = blau ; +b = gelb

Quelle: http://www.heidelberg.com/www/binaries/bin/files/dotcom/de/prinect/expert_guide_color.pdf

Bewertung: 
0
Bisher keine Bewertung